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A new approach to the converse of Noether's theorem 
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Departamento de Fkica Teorica, Universidad de Zaragoza, 50009 Zaragoza, Spain 

Received 8 March 1989 

Abstract. The concepts of vector fields and forms along a map are used to establish a 
condition characterising symmetries of the Hamiltonian system associated with a regular 
Lagrangian. This condition does not mention any second-order differential equation field 
but is expressed in terms of the geometry of the second-order tangent bundle. This result is 
also generalised to the case of Lagrangian functions depending on higher-order derivatives. 

1. Introduction and notation 

The geometric study of Noether's theorem has contributed greatly to a better under- 
standing of the theorem itself. The Lagrangian approach to this study is a particular 
case of a more general situation, i.e. symmetries of Hamiltonian systems, in which the 
infinitesimal symmetries of the Hamiltonian system defined by a regular Lagrangian L 
are characterised by symmetries of the Lagrangian L. More specifically, if X E X(M), 
its complete lift X c  E X ( T M )  satisfies Yx .wL  = wxLL and 6 P X c E L  = E,,,, (where 
w ,  = -dt),, 0, = dL o S and S is the vertical endomorphism on T M  (Crampin 1981)) 
and therefore X c  is a symmetry of the Hamiltonian system ( T M ,  wL,  E,) if and only 
if there exists a closed form s( E A ' ( M )  such that X c L  = 2 (with 4 E C x ( T M )  being 
defined by 4(q,c)  = rY(u)  for ( q , c )  E T M ) .  In this case, if s( = dh, the function 
G = s'h - ix ,O,  is a constant of motion, where T is the tangent bundle projection. 

In a recent paper Marmo and Mukunda (1986) provided a characterisation of all 
symmetries of ( T M .  w,, E,), not only complete lifts, in terms of properties of L, by using 
the set X, = ( X  E X ( T M )  1 S ( [ X , D ] )  = 0 )  of Newtonoid vector fields with respect 
to a second-order differential equation (SODE) D and the projection TC, : X ( T M )  -+ I,, 
given by TC,(X)  = X ( D )  = X + S ( [ D , X ] ) .  In local coordinates, if the vector field X is 
written X = q'?/c?q' + <'?/?U', then X ( D )  = q'?/?q' + ( D q ' ) s / d u ' .  Their results can be 
summarised as follows. 

Theorem. Let L E C"(TA4) be a regular Lagrangian. If X E X ( T M )  is such that there 
exists a function F E C " ( T M )  satisfying 

(1) YxrD, L = Y, F for any SODE D 

then G = ix8, - F is a constant of motion. Moreover, if is the dynamical vector 
field, then Y,y(r,w, = 0 and Y X ( r , E L  = 0, i.e. X ( T )  is a symmetry of the Hamiltonian 
dynamical system ( T M ,  wL,  E,). Conversely, if X is a symmetry of ( T M ,  oL, E L ) ,  then 
X = X ( r )  and there exists a function F E X ( T M )  such that (1) holds. 
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Of course, the simplest case is when X is a complete lift X = Yc with Y E X ( M ) ,  
because then X ( D )  = X for any SODE D ,  and F reduces to the pull-back t * h  of a 
function h on the base M .  

The point to be remarked is that a vector field X can only be a symmetry of 
( T M , o , ,  E L )  if it is in SE, and then its vertical components 5' are determined by the 
other ones, namely ti = rq'. If X ,  -X ,  is vertical, X ,  (D) = X , ( D ) ,  and therefore it is not 
a specific X but an equivalence class 'up to a vertical field' which is playing the relevant 
role in establishing the constant of the motion. This is better displayed by means of 
the concept of section along a map, which has also been used recently (Gracia and 
Pons 1989) for an alternative geometric interpretation of the time-evolution operator 
for singular Lagrangians (Cariiiena and L6pez 1987), that we introduce in the next 
section. 

We will make use of the theory of higher-order tangent bundles, and we generally 
follow the notation of the paper by Crampin et a1 (1986): Tk , , :  T k M  -+ T ' M  are the 
bundle projections, T ( k )  is the map given the total time derivative dT,k,, f(,) are the 
functions given by 

for Q E T k M  and r~ a representative of Q, etc. We will also make use of the theory of 
p-derivations (see Pidello and Tulczyjew 1987). 

2. Sections along a map 

Let n :  E -+ M be a fibre bundle, f : N -+ M a C"-differentiable map and denote 
f * E  the pull-back of the bundle E by the map f .  By a section of E along the map 
f (or over f )  we mean a C5-map o : N  --+ E such that i~ o r~ = f. There exists a 
one-to-one canonical correspondence between the set of sections along f and sections 
of the bundle f * E  over N. Moreover, if E is a vector bundle, then both sets can be 
endowed with C"(N)-module structures and this correspondence is an isomorphism of 
C"(N)-modules. For details, see e.g. Poor (1981). The most important cases for our 
proposals are when the vector bundle is either T M  or (T'M)^P, ( T * M ) @ P @ ( T M ) @ q ,  or 
something similar, and the sections along f are then said to be vector fields, p-forms or 
( p .  q)-type tensor fields along f, and will be denoted Xu), or 2 P , q ( f ) ,  respectively. 

Two special instances of vector fields over f are the restriction of a vector field 
X E SE(M) to f ( N )  obtained by composition o f f :  N + M and X : M  -+ T M  (usually 
denoted X of), and the image of a vector field Y E X(N) under f, denoted f* o Y and 
given by (f* o Y)(n) = f*,(Y(n)). The more traditional concept of vector field in M 
arises here as a vector field along the identity map in the base M ,  i.e. X ( M )  = X(id,), 
and in a similar way, A P ( M )  = AP(idM) and ZP3¶(M) = ZP34(idM). 

The set of vector fields over f is endowed with a Ca(N)-module structure: they can 
be added to each other and multiplied by C"(N) functions and in particular, if ( V , z )  
and ( 4 2 , ~ )  are charts in N and M ,  respectively, such that f (V)  c 42, X is a vector field 
along f and n E "Y, the expression of X ,  in these coordinates is 
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so that every vector field X along f can be written as a linear combination 

x = t i  (-& .f) 

with functions in C z ( N )  as coefficients. In the same way a p-form rl along f has a 
local expression 

z = ( Y , ~  I p ( d ~ ' '  o f )  A .  ' .  A (dx'r o f )  (3) 

where x , ,  I p  E C X ( N ) .  Moreover, Xu) and A'U) are dual moduli by means of the 
pairing ( X , Z ) ( ~ )  = (Xn,a , ) .  We sometimes put m ( X )  = (X,a). 

I t  has been shown by Pidello and Tulczyjew (1987) that a vector field X along f 
determines two f'-derivations of scalar forms on M :  one of type i, and degree -1, 
denoted i,, and other of type d,, denoted d,. If g : P  4 N is another differentiable 
map, then 

* .  
g O I ,  = lXag and g* o dx = d,,,. (4) 

In the following we will be concerned with cases in which f are the natural 
projections T , , ~  : T ' M  + T k M ,  for k and I non-negative integer numbers such that I > k 
and particularly the case 1 = k + 1. We recall (Crampin et al 1986) that there is a 
natural map 

T ' ~ )  : T ~ + ' M  + T ( T ~ M )  ( 5 )  

where if Q E Tk+'M then T'"(Q) is the vector at T k + l , k ( Q )  tangent to the curve 
Pk: l  c R -+ T k M  lifted from a curve p : l  c R + M in the equivalence class defining 
Q. This map can also be considered as a vector field along ?k+j,k according to the 
preceding definition. 

3. Liftings of vector fields along projections 

Let X be a vector field along T, ," .  For every k > 0 there exists one vector field denoted 
X ' k )  over T ~ + ~ . ~  such that 

and satisfies 

d,,A, 0 d,IA-,, = d,,lA, d,IA-li (7) 

where, for k = 1, X ' " )  = X .  
We will give an explicit construction of such vector field. Let us choose X E I ( T M )  

a vector field on T M  such that T , . ~ ,  O X  = X. For every Q E TkilM, let p be a curve in 
M representative of Q and ph the lifted curve in T k M .  Then the map x : %  c R2 + M 
defined by 

x(s9 t )  = (T1.0 0 4, 0 P%t) 
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where $s is the flow of X, can be used to determine a vector X g '  tangent to T k M .  
More specifically, for any real number s, the curve in M ,  x,y(t) = ~ ( s ,  t ) ,  defines a point 
in T k M .  As a function of the parameter s we obtain a curve in T k M  whose tangent 
vector for s = 0 is the above-mentioned vector X g ) .  

This tangent vector does not depend either on the vector field x, or on the choice 
of the curve representative p of Q. A straightforward calculation shows that for any 
function f E C r ( M )  and n = 0,. . ., k 

and 

We can see from (8) that Xg' is tangent to T k M  at the point Tk+l,k(Q), so that the map 
~ 1 ~ ' :  Q H x:' is a vector field along T k + ] , k .  NOW (9) shows that 

and from the definition of TI"' we have 

(1 1) 

which implies (6) and (7). 
Since two vector fields agreeing over functions of the type fin) must be equal, we 

can conclude that X ' k )  is uniquely defined. 
In the particular case of X being the restriction of a vector field Y E X(M), 

X = Y o the vector field X ( k )  reduces to the restriction of the complete lift Ycak E 
X ( T " M ) ,  namely X'k '  = Yr.' O T ~ + ~ . ~ .  This is the reason why we call X ' k )  E X ( T ~ + ~ , ~ )  the 
generalised complete lift of X E X ( T ~ , ~ ) .  

( A )  x f,", = ( d y ,  0 " ' 0 dTiii)(dXf) 

If the coordinate expression for X is 

then the corresponding expression for XIk' is 
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Semibasic forms can be identified with forms along the projection map. We 
consider only the projection T , , ~ ,  but the same is true for the other ones. For instance 
if r E A \ ' ( T M )  is semibasic then the associated 3 E A'(T~,-,) is defined by 

where Q E T M ,  U E T,IU,Q,M and cT  E T Q ( T M )  is such that T ~ , ~ + ~ L . ~  = U. This fact 
implies that if X E X(T,,,) and 8 E X ( T ,  are such that T ~ , ~ +  o 8 = X o then 

As a consequence we have that for all X E X(T,,,) and r E A ' ( T M )  

which will be used later on. Indeed, 

and as dT,,,sc is semibasic over T M  we can put i,,2idT,llr = ~ ~ ~ , * ( d ~ ~ , ~ r ) " ( X " ' ) .  Since the 
map T ~ , ?  is a submersion it follows that ( 1  7) holds. 

4. Second-order differential equations 

There are two alternative but equivalent geometrical interpretations for a time- 
independent second-order differential equation in M .  I t  can be seen either as a 
special vector field E X( T M )  projecting on T'O' : 

or as a section ;': T M  -P T 2 M  for T ~ . , .  The relation between r and j ,  is given by 

or in an equivalent way by 

as operators on A ( T M ) .  
From (18) we see that for any function f E C " ( M )  and any SODE r, 

dTioif = y r ( T l . o * f ) .  (21) 

On the other hand, the set Xr of vector fields (Marmo and Mukunda 1986, Sarlet 
1987, Cariiiena et a1 1989b), as well as other related sets, has been shown to play a 
relevant role in both the study of symmetries of r and the analysis of the so-called 
inverse problem of Lagrangian mechanics. Essentially, the vector fields in the set X, 
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are those vector fields in T M  preserving the second-order character of r. We are now 
going to analyse the relation of this set to the generalised complete lifts defined above. 

There exists a one-to-one correspondence betwen X ( T ~ , ~ )  and X,, given by 

whose inverse is the restriction ~~ ,~ .J f i  of T ~ , ~ +  onto 3,. Let X be a vector field along 
T , , ~  and j, the section of T ~ . ~  associated to r. Then, since for any Q E T M  the tangent 
vector X::;, is in T Q T M ,  we have that X") o 7 is a vector field in T M .  Moreover, this 
vector field projects on X :  

r 

T1,o+ 0 X"' 0 7 = X 0 T2.1 0 ? = X (23) 

which shows that T ~ . ~ *  o 1, = idX(7,,)l. Then, bearing in mind (19), (21) and (7) we have 
that, for f E C ' ( M ) ,  

[(dXiIi 0 dTm - dTiri 0 d,ioi)f] (Y(Q)) = X.~~&(T'"f) - T ) { L , ( X f )  

= ( X " '  ? )Q  ( r (TI%o*f) )  - r Q ( ( X " )  ? ) ( T I J ) * f ) )  

= [X"' 0 y, r](Tl,o*f) (24) 

vanishes or, written in a different but equivalent way, ,S([r,X(r)]) = 0, i.e. the condition 
for X " )  o 7 to be in Xr.  

In order to see that ~ ~ , ~ + i ~  is the inverse of I,, let Y be a vector field in X r  and 
denote X = T ~ , ~ +  0 Y E X ( T ~ . ~ ) .  ?hen by (23) we have 

x.:th)f(0) = X Q f  = y Q f ( 0 )  (25) 

so that X"' o ? - Y is a vertical vector field. Since both, X") o j, and Y ,  are in X, they 
must be equal. 

5. Noether's theorem 

Let L be a regular Lagrangian in T M .  The Euler-Lagrange equations for this 
Lagrangian can be written irw, = dE,, or equivalently Y r 8 ,  - dL = 0, since L is 
regular. Alternatively, if ;I: T M  + T 'M is the section corresponding to r , then the 
Euler-Lagrange equations can be written as j,*(dT,,,8, - r,,,*dL) = 0. The l-form 
6 L  = dT,,,B, - T , . , * ~ L  in T 2 M  is called the Euler-Lagrange l-form. I t  is a semibasic 
form over M ,  so that (6L)" is a l-form along T ~ . ~ .  The Cartan form f3, E A ' ( T M )  is 
also semibasic over M so that 8, is a 1-form over T ~ . ~ .  

Let X E X ( T ~ , ~ ) .  We have the following identity: 

dx,,,L = -(6L)"(X) + d-pll(G,(X)) 

which can be proved as follows. Using ( 7 )  for k = 1 we obtain 

T3.2*dx,ilL = dxiaT2.1tL = iX121TZ.l*dL. 
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Then 

where we have used (17). Then, as T ~ , ~  is a submersion, (26) follows. 
If F E C " ( T M )  we have 

d, , i ,L - dTiilF - ( d L ) ' ( x )  + dTlil(hL(X) - F )  

so that if there exist F E C r ( T M )  such that 

then the function G = h L ( X )  - F satisfies d,,,, G = (6 L ) " ( X ) ;  that is, G is a first integral 

Conversely, if G is a constant of the motion given by r, then there will be X E X(t,,,) 
of r. 

such that 

dTl l ,G  = ( 6 L ) ' ( X )  

and then, defining F by F = h,(X)  - G, it follows from equation (27) that 

These results can be summarised in the following version of Noether's theorem. 

Theorem. Let X be a vector field along T, , ,  and L a regular Lagrangian. If there exists 
a function F E C 7 - ( T M )  such that 

then the function G = F - 6 , ( X )  is a constant of motion. Conversely if G is a first 
integral of the motion given by L, then there exist X E X(T, ,~)  and F E C z ( T M )  such 
that (28) holds. 

Condition (28) is equivalent to that of Marmo and Mukunda (1986) but it does 
not make reference to any specific SODE which is an important advantage as far as 
the possible generalisation to higher-order mechanics and classical field theories is 
concerned. Actually, if D is an arbitrary SODE and 6 denotes the corresponding section 
6 : T M  -+ T ' M ,  related by D = 6' o d T ! ! , ,  the 6-pull-back of the equation (28) gives 

and we obtain in this way the condition given in Marmo and Mukunda (1986). 
Conversely, if this condition holds for every SODE D, given an arbitrary point Q E 
T ' M ,  i t  is possible to choose a SODE D such that Q = ~ ( T ~ ~ , ( Q ) )  and therefore 
( d , , , , L  - d T , l l F ) ( Q )  = 0. This property being true for any Q E T ' M ,  condition (28) is 
recovered. 
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6. Generalisation to higher-order mechanics 

In this section we wish to show how the results obtained in the last section can be 
extended to higher-order mechanics. First, we need a generalisation of the construction 
of 53 to the case of vector fields along T , , ~  with 1 a natural number. The details of 
this construction will appear elsewhere (Cariiiena et a1 1989~) ;  we only say here that 
the the liftings X ( r )  of a vector field X E X(T,,,) are characterised by the following two 
conditions: 

and 

In higher-order mechanics, the Lagrangian is a function on T k M  so that (assuming 
that L is regular) the Euler-Lagrange equations define in a unique way a 2k order 
ordinary differential equation, that is, a vector field r E 3E(TZk-’M) projecting on 

or alternatively a section 7 of the bundle T ~ ~ , ~ ~ - ~ :  T Z k M  + T Z k - I M .  More 
precisely, the Euler-Lagrange equations are Y,B, - T ~ ~ - ~ , ~ * ~ L  = 0 or alternatively 
;$*6L = 0 where 6 L  = dT,2A-l,$, - T ~ ~ . , * ~ L .  (See Crampin et a1 (1986) for the details of 
the construction of d,.) 

~ ( 2 k - 2 )  

Proposition. Let X be a vector field along T ~ ~ - , . ~ .  X E X ( T ~ ~ - ~ ~ ) .  Then the following 
property holds : 

ProoJ: Since 6 L  = dT’2h.i)8L - T ~ , . ~ * ~ L ,  and using properties (29) and (30), we have 

Now, taking into account that 6 L is semibasic over M and 8, is semibasic over T k - ’ M ,  
we can put 

and 

so that 



The concerse of Noether's theorem 4785 

Let us suppose that there exist a vector field X E X ( T ~ ~ - ] , ~ )  and a function 
F E C" (T3k -2M)  such that 

Then, from (31) we have 
d x : i , L  = dTtu ?IF.  

dT:)i--?i [ F  - 6L("A- ' ' ) ]  = -T.3kPl,2k* [ ( G L ) " ( X ) ]  

so that there exists a funtion G E C ^ ( T 2 ' - ' M )  such that T ~ ~ - ~ , ~ ~ - ~ ' G  = F - 6 L (  X'k-') ) 3  

i.e. dT,21.,iG = - ( G L ) ' " ( X ) ,  and composing with ?* we have that G is a constant of the 
motion. 

Since dT,zk_, ,G 
vanishes along the equations of motion, there will exist a vector field X along T ~ ~ - ~ , ~  

such that dT,2A-:,G = - ( G L ) " ( X ) ,  and then defining F = 6 L ( X ' k - 1 ' )  - T ~ ~ - ~ . ~ ~ - ~ * G ,  the 
equation (31) becomes d X l A , L  = dT,qk-21F. 

Then, the generalisation of the above version of Noether's theorem for these 
higher-order Lagrangians I S  as follows. 

Conversely let G E C " ( T Z k - ' M )  be a constant of the motion. 

Theorem. Let L be a Lagrangian function in T k M  and X a vector field along T ~ ~ - ~ , ~ .  If 
there exists a function F E C"(T3"'M) such that d X l 1 , L  = dTI3"-?,F then the function 
G E C"(T2"- 'M) defined by T ~ ~ - ~ . ~ ~ - ~ * G  = F - 8 L ( X ' k - ' j )  is a constant of'the motion. 
Conversely, given a constant of the motion G E C " ( T Z k - ' M )  there exists a vector field 
X along T ~ ~ - ~ . ~  and a function F in T3Ap2M such that d x l i , L  = d T l , - 2 1 F .  

In summary, we have been able to give a generalisation of Noether's theorem 
admitting a converse, by considering as fundamental objects vector fields and forms 
along a map, which are seldom found in the physics literature, instead of true vector 
fields and forms. The usefulness of these concepts will be shown in a subsequent 
paper (Cariiiena et al 1989c) where their role in the geometric foundation of clasical 
mechanics will be remarked upon. 

Noether's theorem is here presented not only as an academic reformulation of 
Marmo and Mukunda (1986) but in such a way that it admits a straightforward 
generalisation for higher-order mechanics, as was shown in $6, Furthermore, in the 
case of first-order Lagrangians, these concepts are used to establish a one-to-one 
correspondence between X ( T , . ~ )  and the set X, of Newtonoid vector fields for every 
second-order differential equation field r by taking advantage of a twofold geometric 
interpretation of the second-order differential equations. 

Finally, it is worthy of mention that this theorem is directly generalisable to 
classical field theory. There, the role of the canonical vector field T(k)  is played by the 
horizontalisation operator h'!'", the total time derivative becomes a total divergence of 
a vector field along 7r1 given by d h l l , ( i X R )  = div(X)R, where R is a volume form in the 
base, and the role of the symplectic structure is played by the multisymplectic structure 
defined by the Lagrangian function (see Saunders (1989) and Cariiiena et al (1989a) 
for the notation). 
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